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Abstract—A method is presented to approximate the asymptotic Nusselt number in long ducts with parallel
walls and arbitrary cross-sections: The flow in the ducts is laminar and fully developed. The temperature
of the ducts’ walls changes in the form of a step. The Nusselt number is obtained for large distances from
the location of the temperature step. The method shows how to obtain both upper and lower bounds to the
Nusselt number and how to improve the approximation to any desired degree. Two examples are given:
the circular duct (which is just the Graez problem, solved in [1]) and the square rectangular duct. An
extension is made to cases where only numerical solutions are possible.

A,
a.

B(x, y),

NOMENCLATURE

area of duct’s cross-section ;
coefficients in series solution;
boundary of duct’s cross-sec-
tions;

side of square duct;

specific heat at constant pres-
sure;

region inside cross-section;

an approximation to x, y depen-
dence of temperature, i.e. to 6;
a solution to the first variational
problem;

a solution to the second varia-
tional problem;

coefficient of heat convection;
coefficient of thermal conduc-
tion;

Nusselt number;

pressure;

Prandtl number;

Reynolds number ;

radius of circular duct;
hydraulic radius;
circumference of duct’s cross-
section;
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2
A

non-dimensional temperature;
temperature;;
undisturbed temperature ;
wall temperature for z > 0;
a function satisfying u = w;
velocity component in the z
direction;;
average velocity;
non-dimensional velocity,
w= W/W;

Cartesian coordinates, z parallel
to the duct’s generators;
thermal diffusivity;
non-dimensional z coordinate ;
non-dimensional y coordinate;
a function separated from the
temperature as

T = 0(, n) exp (—A%();
the ith iteration for 6 in nu-
merical solution;
a lower bound to A2;
an upper bound to A2;
a solution to the first varia-
tional problem;
eigenvalue;
smallest eigenvalue;
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U, viscosity;
Ho, a solution to the second varia-
tional problem;
v, kinematic viscosity;
£, non-dimensional x coordinate;
o, non-dimensional radius;
7?2 two-dimensional operator,
i 0*
P4+
ox*  8y?
INTRODUCTION

THiS paper considers a duct with parallel walls
in which there is a fully developed laminar flow
parallel to the ducts generators. The tempera-
ture of the fluid and of the ducts’ walls is constant,
say t,. At z =0 the temperature of the walls
changes to ¢,, in the form of a step, and remains
so for z > 0 (z being parallel to the ducts walls).
Heat-transfer rates are sought for large z. This
problem is generally known as the Graez
problem and solutions for particular cross-
sections are presented in [1-3] This paper
presents a method of solution for arbitrary
cross-sections. This is done by the introduction
of an auxiliary variational problem and then
by the use of the Rayleigh-Ritz method to
approximate the solution and to obtain upper
bounds to the Nusselt number. A method to
obtain lower bounds is also shown, but these
do not come out to be as close to the exact
values as the upper bounds do. Finally a
numerical iteration scheme is suggested for
cases where the boundaries of the ducts are
such that no known functions are available for
the Rayleigh—Ritz method.

ANALYSIS

Let a duct be defined by its boundaries

B(x, y). The z axis is taken parallel to the duct

walls. The flow in the duct is fully developed and

is given by W(x, y) which satisfies the momentum
equation:

3w + ’>w 1oP

ox* ' 9y uoz

W=20 on

= const. (1)

B(x, y).
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The solution of equation (1) is assumed to be
known (numerically even).

The temperature field is described by the
energy equation :

ot ot ok
W(x, J’)E =a <5x—2 + 5)75) (2)
t=1t, at z<0

t=t, on B(x,y) at z> 0.

Equation (2) can be written now in a non-
dimensional form by the use of the following
definitions:

A
ff dxdy=4 §ds=S ro=27
B+D B S

X — 1
= == W=— dxd
¢ o n re 1 W dxdy
B+D
w 2roW
w(C,r/)=W Pr=K Re = r(:)W
z t—t,
‘= ro Pr Re ty — 1L, 3)

Equation (2) now becomes:

oT 0*T 0T
we ) 5 2( +—) )

~ o\ T o
T=1 at (<0
T=0 on B(&n) at (=0

The solution of equation (4) is known for special
cross-sections, such as circular regions, annulus,
two parallel plates; they are considered ex-
tensions of the Graez problem [1-3]. This
paper proposes to obtain the asymptotic Nus-
selt number for arbitrary cross-sections.

Direct separation of variables yields for T
the form:

T= 3 aexp (-0
and the coefficients g; can be chosen to satisfy

a; 0 =1

is

i
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In general the eigenvalues A? form an increasing
series and for large values of {

exp[—(4F — 4] < L. (6)
Let the Nusselt number be defined:
2ryh
= 7
Nu P (7

From which a short calculation yields:
Nu = 33 (®)
or, in another form
_k
- 4r,
(Note that (8) holds even if A7 = A2, which is not
the case here.) A variational problem can be set :
Find fe C? (B + D), f =0 on B(£, n), such
that the functional
g <f.<fdédy
2 2
[ w?ddn

h A3 ©)

A (10)

attains its minimum. The existence of this
minimum is guaranteed (e.g. [4, 5]) for any
B(&, ) which can be divided into a finite number
of smooth curves, i.e. for any physically possible
cross-section. The resulting Fuler-Lagrange
equation for f'is

—A’wf =277, (11)

Comparison of equation (11) and equation
(4) shows that once the f which solves the
variational problem is found, say f, with the
corresponding A2, then

fo=0, AF=2 (12)

It is proposed therefore to obtain approxima-
tions for both # and A, by the application of
the Rayleigh-Ritz method to equation (10).
Besides being an approximation, this would
always yield an upper bound for h [see equation
(9)]. as of course

A% > AL (13)
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Furthermore, assume the variational problem
solved; then

. . 2 ij< f<fdédn
A = min W
_ jl!vfo.vfodfdn 14
fg w5 dEdn
Let a function u(¢, ) be chosen such that
unzwlén m D+ B. (15
Denote
K2=2jg\‘f0.vfod£dn 6
f[uf$ddn
Equations (14-16) yield at once
K? < A3 (17

Now set another variational problem:

Find ge C® (D + B), g = 0 on B(¢, 1), such
that the functional

, ijg.ngfdn
= [ ua® A an

(18)

attains its minimum. The Euler-Lagrange equa-
tion for this problem is

—plug = 2<% (19)

and here u is chosen such that besides satisfying
(15) it makes equation (19) simple to admit an
exact solution. The solution of this variational
problem is g, with the corresponding u2 and
obviously

ui < K*< A3 (20)

A lower bound for A2 = A2, and therefore for h,
is found.

EXAMPLES
As an illustration of the method two examples
are computed :
Example (a): The circular duct, [1]. r, is just
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the radius of the duct. Denote
W = 2W(1 — p?).
Equation (5) becomes
d? 1do
& " pdp
A simple f. to be used in equation (10) is
f=1-p"+C(1 - p?
where the first power in p is not used because
it gives a non-vanishing derivative at p = 0.

df 2
d_p_ —2p—3Cp

g(—2p - 3Cp*)’pdpdeb

—AY(1 — pY0 =

2
= 3530 (2520 + 6048C + 3780C%)

U =p[ =9+ CU—p*)]*pdpdo

2
2520(315 + 712C + 405C%).

Substitution in equation (10) yields

, _ 2520 + 6048C + 3780C2
" 315 + 712C + 405C>

This expression attains its minimum for
C = — 0-513. With this C, A2 becomes:

Ar =732

which may now be compared with 12 = 7:317
taken from [1].

As an illustration, a lower bound is now
found for A2. A simple form for u which satisfies
equation (15) is

u=2=2 - p%=

Equation (19) becomes

d?g dg
299 A 2,2, — Q.
p dp2+pdp+upg

This is a Bessel equation of zero order with the
solution

= Jolpp) and as g=20 at p=1
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U 18 just the first root of

Jo:  po~ 24, p2=576< 2

Of course the lower bound will not be in general

because it is found through the assumed
u(é,n) without any elaborate process like the
Rayleigh-Ritz method.

Example (b): The square rectangular duct, [6].
Let the side of the square be b. Let the origin
of the coordinates be at the lower left corner of
the duct. The solution of equation (1) is

16b2 dp 1 g X L Any
mn(m? + n?) b b

T unt dz

where both m and n are odd.
The coefficients of the first, second, third and
fourth terms in the series are, respectively:

1 1 1 1
130

2300 30
and only the first three terms are retained:

16b2dp[ . WX . Wy
sin — sin
ur® d

b b
1 nEsnm+ §n—xsmﬂ
30 S1 b 1 b sm b b

The definitions of equation (3) become:

b x
A =b? S = 4b, ro =3 §=25.
y — 94  16b*dp
=27 - _ 2
1 b W 45n% ' pn* dz
w_ 4l wé . omy
W= W= g | 3sinssing
+ L sm—sm3—n + sing—ésm—w
30 2 2 2 2
94 16b* dp
Re = - 4572~ vur dz
‘= 4578 poz
~ 752b* (dp/dz)
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A function f is now assumed:

_.mé . my . n¢ . 3mn
f-sm—2—s1n7+C<sm 5 Sin—

3nt . my
+
sin 3 sin 2)

(Note that the series solution of equation (1)
always supply functions for the Rayleigh-Ritz
method here.) These fand w are now substituted
in equation (10) to yield:

1 + 10C?

2 .
= 10298 1-7304 — 1-0376C + 2-8542C?

This expression is differentiated with respect to
C to yield the smallest value of A2 at

C= - . whichis A% = 5-89.

2821

Here also a lower bound for 42 may be of
interest. A simple form for u which satisfies
equation (15) is

AN
T \2"%0)”
Equation (19) becomes

397c
188

This is the Helmholtz equation with the solution

3972 S
188 = "

g=sm—és1nn—"
2 2
(satisfying g =0 at £ =0, 7 =0, 7 =0 and at
E=2).
Hence
2
B 18 ez

Of course, as in the case of the circular duct,
the exact value is expected to be much nearer
the upper bound.
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COMPUTATION METHOD FOR DUCTS OF
ARBITRARY CROSS-SECTIONS
An extension can now be made to ducts with

such cross-sections that even the solution for
W, equation (i), cannot be written in terms of
known functions. In such cases equation (1)
would be solved numerically. Assuming this
done, the following iteration method can be
used:
(a) Assume any 8(x,y) # 0 satisfying 6, =0

on the boundaries.
{b) Compute

[f(<6).(<8)dxdy

—,12 = WoTdxdy , numerically.
{(c) Solve
A2
N4y = — W;loi for 6,4,

numerically, with 6,,, = 0 on the bound-
aries.

(d) Change i + 1 to i, ie. set the values of
0;,, instead of those of 8, then go back to
step (b) above.

This procedure converges [7, 8]. If iteration
is stopped before convergence. A2 is an upper
bound for A3 [see variational formulation and
equation (10)].

REFERENCES

1. J. R. SerLLERs, M. Trisus and J. S. KLEIN, Heat transfer
to laminar flow in a round tube or flat conduit: the
Graez problem extended, Trans. Am. Soc. Mech. Engrs
78, 441 (1956).

2. M. JAKOB, Heat Transfer, Vol. 1, p. 451. Wiley, New
York (1949).

3. E. R. G. Eckert and R. M. DRAKE, Heat and Mass
Transfer, p. 190. McGraw-Hill, New York (1959).

4. S. G. MIKHLIN, Variational Methods in Mathematical
Physics. Macmillan, New York (1964).

5. M. Davip, The methods of Ritz and Weinstein of
approximate computation of eigenvalues, M.Sc. Thesis,
Technion, Israel Institute of Technology (1965).

6. S. H. CLArK and W. M. Kays, Laminar-flow forced
convection in rectangular tubes, Trans. Am. Soc. Mech.
Engrs 75, 859 (1953).

7. D. M. G. ALLEN, Relaxation Methods, p. 167. McGraw-
Hill, New York (1954).

8. D. PNUELL, The thermal stability of completely confined
fluids, Ph.D. Thesis, Case Institute of Technology,
Cleveland (1962).



1748

D. PNUELI

Résumé—On présente une méthode d’approximation du nombre de Nusselt asymptotique dans de longs
tuyaux a parois paralléles et i sections droites arbitraires: I’écoulement dans les tuyaux, est laminaire et
entiérement établi. La variation, de la température des parois du tuyau a la forme d’un échelon. Le nombre
de Nusselt est obtenu pour de grandes distances de 1’endroit du saut de température. La méthode montre
comment obtenir 4 la fois les bornes supérieure et inférieure du nombre de Nusselt et comment améliorer
Papproximation A n’importe quel niveau désirable. Deux exemples sont donnés: le tuyau circulaire (qui
est justement le probléme de Graez, résolu dans {1]), et le tuyau a section carrée. On a étendu la méthode
aux cas ou seules les solutions numériques sont possibles.

Zusammenfassung—Zur Approximation der asymptotischen Nusselt-Zahl in langen Kanilen mit
parallelen Winden und beliebigen Querschnitten wird eine Methode angegeben. Die Kanalstrémung sei
laminar und voll ausgebildet. Die Temperature der Kanalwinde indert sich schrittweise. Die Nusselt-
Zah! wird erhalten fiir grosse Abstinde vom Ort des Temperatursprungs. Die Methode zeigt, wie sich
sowohl obere als auch untere Grenzen der Nusselt-Zahl erhalten lassen und wie die Ndherung auf beliebige
Genauigkeit verbessert werden kann. Zwei Beispiele werden angegeben: Der Kanal mit Kreisquerschnitt
(das ist das Graetz-Problem und ist in [1] geldst) und mit Rechteckquerschnitt. Fiir Fille, in welchen nur
numerische Losungen maglich sind, wurde eine Erweiterung gemacht.

Annoraupa—IIpexsiomxen MeTox onpeeieHNA aCHMITOTHIECKHX BHaYennit uncaa Hyccenbra
B AAMHHHX TPYy6ax ¢ NapajiiedbHHIMH CTEHKAMH M HPOU3BOJILHEIM HOTIEPEYHHIM CEYEHHEM.
Iorox B Tpybax npexpmonaraercA JaMMHADHEIM M IOJHOCTBIO pasBHTHM. Temmeparypa
CTeHOK MameHsaercA crynendaro. Yucmo HyccempTa nmomyueno HiaA GONbLIMX paccTOAHMI
OT TOYKM, PJ€ NPOUCXOXUT TeMOEPATYPHHI ckauoK. MeTO/ M03BOJAET MOIYYHTh HIKHUE H
BepXHHMe TpaHMUB 3HadeHus uuciaa Hyccensra ¥ ymyvinnts npubimmxenue ¢ moGoH mne-
o6xomuMoll creneHnio TounocTH. [IpUBONATCA aBA IIPUMepa : Kpyrias Tpyba (3afgaya ['perna,
pewennasn B [1]) n kBanparusiit kanan. Crenano 06061enne Ha cry4an, B KOTOPHX BO3MOMHHH
TONBKO YHCIEHHbIE PelIeHU.



