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Abstract-A method is presented to approximate the asymptotic Nusselt number in long ducts with parallel 
walls and arbitrary cross-sections: The flow in the ducts is laminar and fully developed. The temperature 
of the ducts’ walls changes in the form of a step. The Nusselt number is obtained for large distances from 
the location of the temperature step. The method shows how to obtain both upper and lower bounds to the 
Nusselt number and how to improve the approximation to any desired degree. Two examples are given: 
the circular duct (which is just the Graez problem, solved in [l]) and the square rectangular duct. An 

extension is made to cases where only numerical solutions are possible. 
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NOMENCLATURE 

area of duct’s cross-section ; 
coefficients in series solution ; 
boundary of duct’s cross-sec- 
tions ; 
side of square duct ; 
specific heat at constant pres- 
sure ; 
region inside cross-section; 
an approximation to x, y depen- 
dence of temperature, i.e. to 8; 
a solution to the first variational 
problem ; 
a solution to the second varia- 
tional problem; 
coefficient of heat convection ; 
coeffkient of thermal conduc- 
tion ; 
Nusselt number ; 
pressure ; 
Prandtl number ; 
Reynolds number ; 
radius of circular duct ; 
hydraulic radius ; 
circumference of duct’s cross- 
section ; 
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non-dimensional temperature; 
temperature ; 
undisturbed temperature ; 
wall temperature for z 2 0; 
a function satisfying u 2 w; 
velocity component in the z 
direction ; 
average velocity ; 
non-dimensional velocity, 

w= WJW; 
Cartesian coordinates, z parallel 
to the duct’s generators ; 
thermal diffusivity ; 
non-dimensional z coordinate ; 
non-dimensional y coordinate ; 
a function separated from the 
temperature as 

T = M, V) exp ( - ,J20 ; 
the i th iteration for 0 in nu- 
merical solution ; 
a lower bound to 1;; 
an upper bound to 1; ; 
a solution to the first varia- 
tional problem ; 
eigenvalue ; 
smallest eigenvalue ; 
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viscosity ; 
a solution to the second varia- 
tional problem ; 
kinematic viscosity ; 
non-dimensional x coordinate; 
non-dimensional radius ; 
two-dimensional operator, 

a2 a2 
72=ax2+-p 

INTRODUCTION 

THUS paper considers a duct with parallel walls 
in which there is a fully developed laminar flow 
parallel to the ducts generators. The tempera- 
ture of the fluid and of the ducts’ walls is constant, 
say to. At z = 0 the temperature of the walls 
changes to t,,, in the form of a step, and remains 
so for z > 0 (z being parallel to the ducts walls). 
Heat-transfer rates are sought for large z. This 
problem is generally known as the Graez 
problem and solutions for particular cross- 
sections are presented in [l-3]. This paper 
presents a method of solution for arbitrary 
cross-sections, This is done by the introduction 
of an auxiliary variational problem and then 
by the use of the Rayleigh-Ritz method to 
approximate the solution and to obtain upper 
bounds to the Nusselt number. A method to 
obtain lower bounds is also shown but these 
do not come out to be as close to the exact 
values as the upper bounds do. Finally a 
numerical iteration scheme is suggested for 
cases where the boundaries of the ducts are 
such that no known functions are available for 
the Rayleigh-Ritz method. 

ANALYSIS 

Let a duct be defined by its boundaries 
B(x, y). The z axis is taken parallel to the duct 
walls. The flow in the duct is fully developed and 
is given by W(x, y) which satisfies the momentum 
equation : 

a2w + a2w i ap 
axz dyZ=--aZ=const. (1) 

The solution of equation (1) is assumed to be 
known (numerically even). 

The temperature field is described by the 
energy equation : 

w(x y)at=a !?!+zt ( > ’ az ax2 ay2 (2) 

r = to at z<o 

r = r, on B(x, y) at z > 0. 

Equation (2) can be written now in a non- 
dimensional form by the use of the following 
definitions : 

jj dxdy=A ids=S r,=2; 
B+D 

q=1' 

10 ss 

Wdxdy 

B+D 

pr = v 
2r,W 

Re = ~ 
CI V 

+L r - r, 

r. Pr Re 
T=- 

to - r,’ (3) 

Equation (2) now becomes : 

T=l at [<O 

T=O on WZ ~1 at [ 2 0. 

The solution of equation (4) is known for special 
cross-sections, such as circular regions, annulus, 
two parallel plates; they are considered ex- 
tensions of the Graez problem [l-3]. This 
paper proposes to obtain the asymptotic Nus- 
selt number for arbitrary cross-sections. 

Direct separation of variables yields for T 
the form: 

and the coefficients ai can be chosen to satisfy 

(5) 

W=O on @x9 Y). 
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In general the eigenvalues &r form an increasing Furthermore, assume the variational problem 
series and for large values of c solved ; then 

exp [-(A: - Jg)[] < 1. (6) 

Let the Nusselt number be defined : 
Ai = min 

2r,h 
Nu = ~ 

k ’ 
(7) = 2~V&Q,d5d~ 

j-j$;drdtl ’ (14) 
From which a short calculation yields : 

Nu = +A; (8) Let a function ~(5, q) be chosen such that 

or, in another form u(C ?) 2 w(& V) in (D + B). (15) 

h=;l;. 
Denote 

(9) 
0 2s ~‘fo.~_hodtdrl 

K2 = i! 

(Note that (8) holds even if 1: = $, which is not !jufhWtt ' 
(16) 

the case here.) A variational problem can be set : 

Find fE ~(2) (B + q, f = 0 on qc, tt), such Equation (14-16) yield at Once 

that the functional K2 < A;. (17) 

Now set another variational problem: 

(10) Find g E C(‘) (D + B), g = 0 on B(<, r~), such 
that the functional 

attains its minimum. The existence of this 
minimum is guaranteed (e.g. [4, 53) for any 
B(& q) which can be divided into a finite number 

” = 2 gug’d<drI 

of smooth curves, i.e. for any physically possible 
cross-section. The resulting Euler-Lagrange 

attains its minimum. The Euler-Lagrange equa- 

equation for f is 
tion for this problem is 

--fl’!f-= 23 
- 

(11) 
q2ug = 2-i2g (19 

Comparison of equation (11) and equation 
and here u is chosen such that besides satisfying 

(4) shows that once the f which solves the 
(15) it makes equation (19) simple to admit an 

variational problem is found, say f. with the 
exact solution. The solution of this variational 

corresponding & then 
problem is go with the corresponding & and 
obviously 

fo =Q, n; = A;. (12) p; < K2 < A;. (20) 
It is proposed therefore to obtain approxima- 
tions for both 8 and A, by the application of A lower bound for 1; = Ai, and therefore for h, 

the Rayleigl-Ritz method to equation (10). 
is found 

Besides being an approximation, this would 
always yield an upper bound for h [see equation 

EXAMPLES 

(9)], as of course 
As an illustration of the method two examples 

are computed : 
A2 2 A;. (13) Example (a): The circular duct, [I]. r. is just 
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the radius of the duct. Denote 

w = 2W(l - p2). 

Equation (5) becomes 

-J2(1 - #&I = d20 + ido, 
dp2 Pdp 

A simple f. to be used in equation (10) is 

f= 1 - $02 + C(1 - p3) 

where the first power in p is not used because 
it gives a non-vanishing derivative at p = 0. 

df -_= 
dp 

- 2p - 3cpz 

jj(-2~ - 3Cp212pdpde 

= &(2520 + 6048C + 378OC’) 

g (1 - P’) [1 - p2 + C(1 - p3)12 P dpde 

= &(315 + 712C + 405C2). 

Substitution in equation (10) yields 

A2 = 
2520 + 6048C + 378OC’ 

315 + 712C + 405C2 ’ 

This expression attains its minimum for 
C = - 0.513. With this C, A2 becomes: 

A2 = 7.32 

which may now be compared with $ = 7,317 
taken from [l]. 

As an illustration, a lower bound is now 
found for Ai. A simple form for u which satisfies 
equation (15) is 

u = 2 2 2(1 - p2) = w. 

Equation (19) becomes 

d2g pZdpZ + p* + $p2g = 0. 
dp 

This is a Bessel equation of zero order with the 
solution 

9 = Jcl(PP) and as g=o at p=l 
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p,, is just the first root of 

Jo: p. w 2.4, & = 5.76 < A2 0. 

Of course the lower bound will not be in general 

because it is found through the assumed 
~(5, q) without any elaborate process like the 
Rayleigh-Ritz method. 

Example (b): The square rectangular duct, [6]. 
Let the side of the square be b. Let the origin 
of the coordinates be at the lower left corner of 
the duct. The solution of equation (1) is 

w = 16b2dp c 1 m7cx n71y __- 
~~71~ dz mn(m2 + n2) 

sin ~ sin __ 
b b 

m,n 

where both m and n are odd. 
The coefficients of the first, second, third and 

fourth terms in the series are, respectively: 

1 1 1 ‘1 
-3 
2 30’ 30’ 130 

and only the first three terms are retained: 

1 

( 

71x 3?zy 371x . 7ry 
+ 3. sinbsmb + sinbsmb )I 

The definitions of equation (3) become: 

A = b2, S = 4b, 
b 

r. = -, 
2 

r=2g 

q=2Y 94 16b2 dp 

b’ 
w=__ -- 

45n2 + ,un4 dz 

W 45n2 1 . rc( . ntj 
=_= 
W 

w = 94 
[ 

z sm 1 sin T 

1 

+ 

7t5 . 
3. 

( sinYsmT 3nlj + sinZsiny 3715 11 
Re = - 

94 16b3 dp 
5x--- vpn dz 

i= 
45#/&xz 

752b4 (dp/dz)’ 
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A function f is now assumed : 

715 f = sin-sin? + C ( n5 37V 
2 2 

sin-sin- 
2 2 

+ sin3arsinY 
> 2 2’ 

(Note that the series solution of equation (1) 
always supply functions for the Rayleigh-Ritz 
method here.) Thesefand w are now substituted 
in equation (10) to yield : 

/iz = 10.298 
1 + 10CZ 

1.7304 - 1.0376C + 2.8542C’ 

This expression is differentiated with respect to 
C to yield the smallest value of A2 at 

c=-& which is A2 = 5.89. 

Here also a lower bound for 1: may be of 
interest. A simple form for u which satisfies 
equation (15) is 

457r2 1 2 

( > 

391r2 
l.FF 2-3o =->w 

188 . 

Equation (19) becomes 

39n2 
- m$g = 2+g. 

This is the Helmholtz equation with the solution 

g = sinZsm2 

(satisfying g = 0 at 5 = 0, q = 0, q = 0 and at 
5: = 2). 

Hence 

n2 188 

” = 39x2/188 = 39 
= 4.821 < &$. 

Of course, as in the case of the circular duct, 
the exact value is expected to be much nearer 
the upper bound. 

COMPUTATION METHOD FOR DUCTS OF 
ARBlTRARY CROS!MECTlONS 

An extension can now be made to ducts with 
such cross-sections that even the solution for 
W, equation (l), cannot be written in terms of 
known functions. In such cases equation (1) 
would be solved numerically. Assuming this 
done, the following iteration method can be 
used : 

(a) Assume any Bi(X, y) f 0 satisfying Bi = 0 
on the boundaries. 

(b) Compute 

An: = SS(TeJ.(yei)dxdy 
ci j-1 we: dx dy ) numerica1ly. 

(c) Solve 
2 

T2ei+1 = - wIei 
a 

for ei+I, 

numerically, with ei+ 1 = 0 on the bound- 
aries. 

(d) Change i + 1 to i, i.e. set the values of 
8i+l instead of those of ei, then go back to 
step (b) above. 

This procedure converges [7, 81. If iteration 
is stopped before convergence. 1; is an upper 
bound for Li [see variational formulation and 
equation (lo)]. 
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R&wm&-0n prksente une mCthode d’approximation du nombre de Nusselt asymptotique dans de longs 
tuyaux d parois parall&les et B sections droites arbitraires: l’koulement dans les tuyaux, est laminaire et 
entierement 6tabli. La variation, de la temp&ature des parois du tuyau a la forme d’un &chelon. Le nombre 
de Nusselt est obtenu pour de grandes distances de l’endroit du saut de temp&ature. La mCthode montre 
comment obtenir 11 la fois les bomes sup&ieure et infkrieure du nombre de Nusselt et comment amkliorer 
I’approximation ;1 n’importe quel niveau dtsirable. Deux exemples sont don&: le tuyau circulaire (qui 
est justement le problbme de Graez, rtsolu dans [I]), et le tuyau g section car&e. On a ttendu la mtthode 

aux cas oti seules les solutions numtriques sont possibles. 

Zusammenfassung-Zur Approximation der asymptotischen Nusselt-Zahl in langen Kanlilen mit 
parallelen WPnden und beliebigen Querschnitten wird eine Methode angegeben. Die Kanalstriimung sei 
laminar und voll ausgebildet. Die Temperature der Kanalw;inde lndert sich schrittweise. Die Nusselt- 
Zahl wird erhalten fti grosse Abstlnde vom Ort des Temperatursprungs. Die Methode zeigt, wie sich 
sowohl oberealsauchuntereGrenzenderNusselt-Zahlerhaltenlassenund WiedieNiiherungaufbeliebige 
Genauigkeit verbessert werden kann. Zwei Beispiele werden angegeben: Der Kanal mit Kreisquerschnitt 
(das ist das Graetz-Problem und ist in [l] gel&t) und mit Rechteckquerschnitt. Fiir FLlle, in welchen nur 

numerische Liisungen mdglich sind, wurde eine Erweiterung gemacht. 

~BHoTa~HHsr-~pe~noHteHMeTO~Onpe~eneHnHaC~MnTOT~ueCK~XaHaseHIlltr~Cna HyccenbTa 
B fiJlUHHbIX Tpy6ax C napaJlJIeJIbHblMM CTeHKaMA II npOH3BOJlbHbIM IIOnepeWSlM CeYeHMeM. 
~IOTOK B Tpy6ax npeanonaraeTca naMHHapHnM A nonHocTbIo pa3mfTbIM. TeMnepaTypa 

CTeHOK I13MeHHeTCR CTyneWIaTO. %CJfO HyCCenbTa IlOJIyYeHO AJIH 6onbmHx paCCTORHElti 
OT TOqKII, I'Ae llpOUCXOAHT TeMnepaTypHblt CKI'IOK. MeTon n03BOJIReT nOJlyWiTb HMH(HI4e A 
BepxHae rpaHllqbl 3HaYeHHi WcJIa HyCCeJIbTa A ynywIIHTb npe6nSueHwe c n1o60t He- 
o6xo~~~o~cTeneHb1oT0~~ocT~1.ITp1i~0~~~cfi~Ba npnyepa: KpyrnaB Tpy6a(3afiaqarpeTqa, 
pemeHHaR B [l])~t~saApa~~b~L KaHan.C~enaHoo6o6~eHneHacny9aw,~~oTop 

TOJIbKO WlCJIeHHbIe peIIleHMH. 


